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ABSTRACT

A polynomial f(z) of even order n can be written either in sum-

mation form with real coefficients A0 , AV .- An, or in product

form where the factors are quadratic polynomials in z. The coeffi-

cients of the factor polynomials are y associated with z1 and x

associated with z°. A comparison of the coefficients in both forms

yields systems of equations that can be systematically ordered.

When x is replaced by x, and y by y, a Z matrix can be recognized

as the essential part of one of the systems. Based on fundamental

theorems of algebra, the Z matrix has been developed for

polynomials of orders 2, 4, and 6.

The Z matrix of order n has a strong internal construction.

Its relationship to matrices of the adjacent orders n ± 2 is such that
N it can be obtained in ascending or descending sequence. The ele-

ments of the Z matrix are simultaneous polynomials in x and y.

The Y matrix can be derived from a comparison of the coefficients

or from the Z matrix. The elements of the Y matrix are polynomials

in x only. The elements of the main diagonal of the Y matrix

and the elements in the upper parallel to the diagonal can be obtained

from the coefficients of f(x). A process of iterative differentiation

yields the elements below the main diagonal; a process of iterative

integration yields the elements above the upper parallel to the

main diagonal. The Z matrix and Y matrix are thus known and

can be computed for a polynomial of any even order with real

coefficients. Properties and characteristics of the Z matrix and the

Y matrix have been compiled in 12 theorems. Aoosslson For

N=_' 0QR A&T

fl ..... . .- 1
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PREFACE

In the course of elaborating methods for finding the roots of

polynomials with real coefficients, a comparison of the coefficients

has disclosed some striking properties in certain systems of equations.

It seems worthwhile to summarize these properties in a separate

report. A careful search of the literature has not disclosed any

previous publication of similar nature, which should justify pre-

sentation of this data as 'theorems.' The author will be happy

to receive comments on the adequacy of his literature sources

and citations.
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ON TWO MATRIX SYSTEMS DERIVED FROM A POLYNOMIAL
OF EVEN ORDER WITH REAL COEFFICIENTS

1. INTRODUCTION

The function

f(z) n- Akzk =A nzn+A n1zn-1 zn-2f(~ k=0 AnZ+ n-1Z + An 2 Z +"

+ A2 z2 + A1 z + A 0  (i. la)

is a polynomial in z. Its order is n and, for our discussion,

the coefficients Ak represent real numbers, either positive or

negative. The subscript k is identical with the exponent k of the

power z k that is associated with the coefficient. The coefficient An
is assumed to be _ 1. All polynomials will be understood as though

written in the expanded form of Eq. (1. la).

For reasons that will be explained immediately, we will deal

only with polynomials of even order n. Thus, throughout the dis-

cussion n is an even integer. The polynomial equation

f(z) = 0 (1.2)

has n simple roots. Let us postulate intermediately that all the n/2

roots in Eq. (1. 2) are conjugate complex pairs. Then

f(z) = ný (z2y Yvz+x ) (1. 1b)
V=1 V

Received for publication August 1, 1961.
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is an alternative form of Eq. (1. la). Each factor z2 + yVz + x in Eq.

(1. lb) represents one of the n]/2 pairs of conjugate complex zeros

ZV=a +jP V (1.3)

where

= (1. 3a)

2.P =½ 4xv - YV (1. 3b)

and
v = 1,2, ... n/2. (1.3c)

The coefficients y vand x in Eq. (1. lb) represent real numbers.

All x are positive. The y may be positive or negative, depending

on whether the corresponding pair of conjugate complex zeros is

in the left or right half of the complex z plane. If f(z) has only

conjugate complex roots, then the coefficient A 0 iii Eq. (1. la) is

positive.

If f(z) has only conjugate complex roots, it may be considered

as the residual polynomial of a polynomial F(z) of order N (N being

an even or odd integer) from which all the N-n real roots have

been removed. By Sturmts 1 method we can find out if a polynomial

has real roots and discover their approximate location. A very

rough indication suffices as a start toward obtaining more accurate

values by working out some real z values. Hornerts2 method is

then used to find the real roots, within any desired accuracy. Re-

moving these roots leaves a polynomial of order n that has only

conjugate complex roots.

Schematic procedures for both Sturm's and Horner's methods
3

are described by Willers, as well as in a report now in preparation

by the present author. The problem of root-finding will not be

further discussed in this paper. What has been given here should be

enough to show justification for dealing with polynomials of even

order only. There is no necessity to postulate that the even-order

polynomials under discussion have conjugate complex roots only.

U
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2. COEFFICIENT COMPARISONS

From Eqs. (1. 1a) and (1. 1b),

n k ný2
5- Ak k = (z 2 +yZ+x V), (2.1)
k=0 v=l

with A 1. After the multiplication on the right side of this equationn
is carried out, we compare the coefficients that are associated withk
the same power z on both sides of the equation. The result is the

following

An = combO yv 1

A n- = comb 1y
An 2 =comb2 y + comb1 x combO (y

An- 3 = co°m4b xv comb yv y20

An-4 cormb yv + comb x comb2 Yv + comb2 x " comb1yv
An-5 = comb Y ÷ + comb xv comb Yv + comb x V. comb YV

2
In these formulas comb Yv, for instance, represents the sum

of all second-order products y 1 y 2 , y 1 y 3 , y 2 y 3, etc., taken from the

set of (n/2)yv, omitting repetitive indices such as y 1 y1 or y 2 y 2 .1 1
Similarly, comb x " comb YV represents the sum of all products
x 1 Y2 , x 1 y 3 , x 2 yl, x 2 Y3 , etc., taken from the set of (n/2)xv and

(n/ *Yc, excluding such combinations as x 1 y 1 or x 2 Y2 . A combina-

tion comb0 is defined as E 1.

Equations (2. 2) show the systematic development of the sequence

of coefficients An, An- 1 ..... There is no disturbance in this sys-

tematic structure until we have passed the coefficient An/ 2. For

the coefficient A(n-2)/2' the first element in the sum corresponding

to those in Eqs. 2.2 would be comb(n+ 2 )/ 2 y . For this combination,

however, the only elements available are (n/2)yV. This kind of

combination is therefore = 0. For the coefficient A0 = A n-n'

especially, only one combination is possible, and that is comb x V

comb 0yv comb n/2X .
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Let us explain the development for the sixth-order polynomial

as an example. Here,
z6 + A5z5 + A4z4 + A3z3 + A2z2 + Alz + A0

= (z 2 +yZ+X 1 )(z 2 +y 2 z+x 2 )(z 2 -y3 z4x 3 ).

From Eqs. (2. 2),

A =A E 1n 6

A 1n-I = A5 = comb1 yv = y + Y2 +y 3

An-2 = A4 = comb2yv + comblxv = ylY2 + YlY3 + Y2Y3 + x1 + x2 + x3
3 1 1

An- 3 = comb y + comb x • comb yv

= yyl2Y3 + Xl(y 2 +y 3 ) + x 2(yl+y3 ) + x 3 (y 1 +y 2 ).

The coefficient

An-3 = A3 = A6/2'
I

and since from here on only the three elements y 1 ' Y2' and Y3 are

available, we have to watch how we apply Eqs. (2. 2)., In

4 1 2 2
An- 4 = A 2  comb y + comblx - comb Yv 4 comb x

the element comb4 yv 0, and thus

A 2 = xly 2 y3 + x 2y 1y 3 + x 3y 1 y 2 + x 1 x 2 + xlx3 + x 2x 3*

In

An-5= A1= comb5 y + comb1xv " comb3yv + comb2 x " comb 15rvy

comb 5yv _ 0 since five elements are not available. But the second

element in the sum also disappears because comblxv . comb3 y is

not possible without repeating an index. (A combination xly 1 y 2y 3

is not allowed.) Thus, only the third term is valid and so

A1 x 2 Y3 + X1 X3 Y2 + x 2 x 3 yI.

Finally, since comb 6yv 0 and comb 4yv = 0, and comb2xv x comb 2yv

is not possible without repeating an index, all that remains is

A0 = x 1 x 2x 3 .
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The coefficients of the polynomials of orders 2, 4, and 6 are

presented in Table 1 for convenience in following the discussion.

3. EQUATIONS DERIVED FROM COEFFICIENT COMPARISONS

3. 1 A System of Equations Derived From Comparing Coefficients
of the Fourth-Order Polynomial

We will now perform some very simple algebraic operations

on the polynomial of order 4 with the coefficients listed in Table 1.

We arbitrarily eliminate

x = A0 /x 1  (3. 1)
and Y2 =A 3 - yI" (3.2)

By substitution we obtain

A 2 = xI + A 0 /x 1 + yl(A3 - yd) (3.3)

and

SA 1 = xl(A3 -yl) + A 0 yl /x 1 . (3.4)

Note that the coefficient A1 does not appear in Eq. (3.3) and that
the coefficient A2 does not appear in Eq. (3. 4). By other selec-

tions for eliminating x 2 and Y2 and subsequent substitution we

can find an equation in which the coefficient A does not appear,0

as well as an equation in which all four coefficients A through A3
do appear. Each of these equations is a simultaneous polynomial

in xI and y,.

If we eliminate x 1 and y, instead of x 2 and y2' the results will

be the same except that the simultaneous polynomials obtained will

be in x 2 and Y2 " Since the subscripts are after all only indices of

the factors in the sequential product of Eq. (1. lb), which are

commutative, we may in all cases interchange x 1 and y1 with x2

and Y2 " We therefore drop the indices 1 and 2 and let

x represent xI or x2'
and y represent yl or Y2'

noting that when x stands for x 1 , then y stands for y1 ; and if x

, ,
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stands for x 2 , then y stands for Y2. Equations (3.3) and (3.4) and

those mentioned in the paragraph following those equations now

read as follows:

-x3 A3  +x 2yA 2  -x(y 2-x)A1 +y(y 2-2x)A0 = 0. (3.5a)

x3 +x2 A2 -xyA1  +(y2 -x)A 0  0. (3.5b)

-x2 y +x 2A 3  -xA1  + yA0  0. (3. 5c)

-x(y2 -x) + xyA3  -xA 2  + A 0 _ 0. (3. 5d)

-y(y2-) +y-A3 -yA 2  +AA 1 0. (3.5e)

Each of the Eqs. (3. 5a) to (3. 5e) inclusive is a simultaneous poly-

noinial in x and y, involving of course the real solutions x =x

and x = x 2 , and y = y, and y=Yy2 , but written without the dis-

tinguishing index.

A closer look at these equations shows that the coefficients A3

through A0 have the leading role in this equation system. This

becomes more evident when we represent the simultaneous poly-

nomials by Z, using a double integer index ik, with i indicating

the row and k indicating ti., column in the expressions given in

Eqs. (3.5a) to (3.5e). We then obtain

Z + Z 0 1A3 + Z 0 2 A2 + Z 0 3 A 1 + Z 0 4 A0 = 0. (3.6a)

z 1 0 + Z 1 1 A 3 + Z 1 2A 2 + Z 1 3 A 1 + Z 1 4 A0 = 0. (3.6b)

Z 2 0 + Z 2 1A3 + Z 2 2A 2 + Z 2 3 A 1 + Z24 A 0 = 0. (3.6c)

z30 + Z 3 1A 3 + Z 3 2 A2 + Z 3 3 A1 + Z 3 4 A 0 -0. (3.6d)

Z40 + Z41 A3 + Z42 A2 + Z43 A1 + z44 A0 = 0. (3.6e)

These equations can be abbreviated by using matrix notation of

the form

[ZikA 4 -k]4,4 = [Zik]4,4 *[A4-0]4  0. (3.6)

The matrix in Eq. (3. 6) will be referred to as the Z matrix. It is a

square matrix of 5X5 elements (5 rows and 5 columns), .,umbered



7

from Row 0 and Column 0, respectively. The elements of the Z

matrix are simultaneous polynomials in x and y. In its full form

the matrix is:

Z00 Z01 z02 z03 Z04

z z z z z10 11 12 1• 14

z 2 0 z 2 1 z 2 2 z 2 3 z 2 4  = zik4 (3.7)

z30 Z31 z32 Z33 Z34

Z40 Z41 z42 Z43 Z44

If we now compare Eqs. (3.6a) through (3.6e) with Eqs. (3.5a)

through (3. 5e) to identify the elements Zik with the simultaneous

polynomials, we discover the following significant properties of

the matrix [ik] 4,4:

1) The elements in the main diagonal are all 0.

00 11 22 33 44 . (3.8)
2) The elements Zik = Zki if (i+k) is odd. (3.9)

3) The elements Zik = - Zki if (H-k) is even. (3.10)

From Eqs. (3.9) and (3. 10)

4)

Zik - - Zk(- 1 )itk (3.11)

5) The structure in the diagonal direction is such that

Z01 = 2 Z 0 2 = x y

Z12 = - 01 /X = x Z 13 = - Z 0 2 /x = -xy

S23 = 12 l2/x = -x Z 2 4  -Z 3 /x = y

Z34 = 2 3 /x= +1

Z03 = _ x(y 2 -x) Z 0 4 = y(y 2-2x)

Z 1 4 Z 0 3 Ix y2 -x
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Thus, generally,

Z(i+ l)(k+ 1) = - Zik/X. (3.12)

Note that in any three sequential equations in the system Eqs.

(3. 5a) through (3. 5e), the third results from operations on the

two preceding it. For instance, if we multiply Eq. (3. 5d) by

-y and add the result to Eq. (3. 5c), we obtain Eq. (3. 5e) mul-

tiplied by -x.

6) The structure in the column direction is therefore such that

Zik = YZ(i+ 1 )k - xZ(i+ 2 )k" (3.13)

It can easily be proved that if the elements in any column or in

any row are known, Eqs. (3. 8) throi gh (3. 13) will give all the ele-

ments of the Z matrix. Since, for example, Znn =0 and Z(n-l)n = +1,

the last column is known from Eq. (6. 16).

3. 2 A System of Equations Derived From Comparing Coefficients
of the Sixth-Order Polynomial

A procedure of elimination and subsequent substitution can

be performed on the polynomial of order 6 with the coefficients

listed in Table 1, just as in Sec. 3. 1 for the polynomial of

order 4. In this case,

x stands for xI, x 2, or x 3 ,

y stands for y1 , y 2, or Y3 "

When x represents xI, then y represents yl, and so on. The

result is the following:

i -k] 6 ,6 =Z6,6. [A 6 0- (3.6 14

Since the matrix [Zik] 6 6 represented by this equation has the

same properties as described by statements (3.8) through (3. 13),

it is sufficient to present only the elements of row 0 of the Z matrix

derived from the sixth-order polynomial:

Z01 X - 02 = y Z 0 3  x(yX) (3.15)

z 04 x 2 y y 2 -2x) Z = -x(y 4 -3xy 2 2 ) Z06 = Ayy4-4xy2+3x2)
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Note, for instance, that Z02 in the Z matrix of order 4 is dif-

ferent from Z02 in the Z matrix of order 6, just as A 2 in the

polynomial of order 4 is different from A 2 in the polynomial of

order 6. So long as we stay within the same order, however,

further distinguishing indices may be omitted.

3. 3 The Z Matrix of the Polynomial of Order 2

The equations that can be derived from the polynomial of

order 2 are immediately given by the definition of the coefficients.

They are-a triviality, of course-the following:

-xA 1 + yA0  0. (3.16)

-x + A0 =0. (3.17)

-y +A1 a 0 (3.18)

All three equations are satisfied by x = x 1 and y = y,, since

A = x1 and A 1 =y. The elements of the Z matrix are

ZO =Zl = Z2 =0
z00 z11 z220

Z 0 1 =Z 1 0 = -x; Z 0 2 =-Z 2 0 =y (3.19)

Z =Z = 1z12 Z211

All the statements in Eqs. (3.8) through (3.13) are true for this

trivial case also.

For convenient reference, the elements of the Z matrices

of orders 2, 4, and 6 are listed in Table 2.

4. COMPARISON OF THE Z MATRICES OF THE POLYNOMIALS
OF ORDERS 2, 4, AND 6

In Sec. 3 we showed the relationships between elements in the

Z matrices of orders 2, 4, and 6. In each case the matrices had

been derived from a comparison of the polynomial coefficients

according to fundamental theorems of algebra. We will now com-

pare the elements of one of these matrices with the elements of
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the adjacent orders. Let us first compare the matrix [Z'i 6, 6

of order 6 with the matrix [ZikI 4 of order 4. Here we will

use an additional subscript to indicate the matrix order containing

the element being examZ.ned.

The elements of the matrix LZikI 6,6 are listed in Table 2.

If we delete Rows 5 and 6 and Columns 5 and 6 of the matrix

[Zik] , the residual square matrix contains 5 rows and 5i6,6

columns. Dividing the elements of the residual matrix by x

gives the exact matrix [Zik] For instance,

(Z 0 1 ) (Z2 3
4 6

(Z 0 2 )4 = (Z 0 2 )6 /x2 = x 4y/x2 =x y,D

and so on.

We now consider the matrix [Zi k] 4 of order 4. If we delete

Rows 3 and 4 and Columns 3 and 4 of this matrix the residual

square matrix contains 3 rows and 3 columns. Dividing each ele-
2

ment of the residual matrix by x gives the exact elements of

the matrix [Zik] 2,2 Thus we find, at least for the order se-

quence 2, 4, and 6, that the elements of the matrix [Zk]l

can be obtained from the elements of the matrix FZik] (n n
L' (n+ 2)(n+ 2)

by deleting the last two rows and the last two columns of the

matrix of order (n+ 2) and dividing the elements of the residual
2

square matrix by x .

Let us now reverse the procedure. Assume that the elements

of the matrix [Zik] are known and that the elements of the
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matrix LZikj k arce to be found. All the elements of the matrix

[Ziki 6,6 in the area of the five Columns 0 to 4 and the five Rows 0

to 4 are known immediately, since we have only to multiply the

corresponding elements of the matrix [Z 4,4 by x 2

x2(Z 10 )4 x2(Z1 1)4 x2(Z12)4 x (Z 13 )4 x (Z1 4 )4 ZI 5 Z16

x 2 (Z2 0 )4 x 2 (Z2 1)4 x 2 (Z22 )4 x 2 (Z2 3)) x 2(Z2 4 ) Z).25 Z26
4 4 4 4 4

x (Z3 0 ) x (Z3 1 ) x 2(Z 2 ) x (Z.3 )6, 6,

x 2 (z 4 0 ) x 2 (Z 4 1) x 2 (Z 4 2) x2 Z43)4 x 2 (Z 4 4 )4 z45 z46
4 44

z50 Z51 Z52 Z 5 3  Z54 Z55 156

z60 Z61 Z62 Z63 Z 6 4 Z65 Z66

To find the elements in Rows 5 and 6 and Columns 5 and 6, we

apply the rules of the diagonal and of the column structure of the

matrix k . From statement (3. 12) we know thatmatrx ki 6 , 6

(Z 1 5 )6 = -(Z 0 4 ) 6/x = -(Z 0 4 ) 4 x=-xy(y 2-2x),

and that

(Z 2 6 ) = -(Z 1 5) /x = y(y2 -2x).
6 6

Furthermore, since

(Z 2 5 ) = -(Z 1 4 ) /x =-(Z 1 4 ) 'x =-x(y2 -),

6 6 4
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all the elements in Row 2 of the Matrix [zid 6,6 are now known.

Proceeding in the same way, we find all the other elements in

Rows 3, 4, 5, and 6 of Columns 5 and 6. For instance,
2 2

(Z 3 6 )6 = (Z 1 4 ) 6/x2 = (Z 1 4 ) 4=y 2 -x.

To find elements Z 0 5 , Z 0 6 , and Z 1 6 , we apply statement (3.13):

(Z 0 5 ) = Az(1 5) - x(Z 2 5 )
6 6 6

= -xy2(y2-_ 2x) + (yx)-x(x2-3xy2+y4),

(Z 16  = Yzz2 6 ) - x(z 3 6 )
6 6 6

2 2 2_ 2_ 2 4
= y2(y-2x) - x(y -x) = x - 3 y +y

(Zo0 6 ) = •z - X(z )
6 ( 1 6 6 x( 2 6 )66 6

= y(x2 -3xy 2+y 4) - xy(y 2-2x) = y(3x -4xy 2+y 4).

All the elements in Columns 5 and 6 are now known. We obtain

the rest from statement (3.11) and thus complete the matrix

[Zik] 6,6. A check shows that our results agree with the coefficients

in Table 2.

As another example we now derive the matrix [zi) from

the matrix [Zik] 2,2 without repeating the explanation.
th a 2i 2, 2

x (Z 0 0 )2 x (Z 0 1 )2 x (Z 0 2 )2 ZO3 z04

2 ( 10) X( 11) x(12 2 3 z1
2 2 2x 2(Z 0 ) x 2(Z 21 ) x 2(Z 12 )2 Z 3  Z2 4

2 x 2  2 4,4.=
x(Z 2 0 )2x(Z 2 1 )2x2(Z2 2 )2 23 Z24 =[i]44

Z30 Z31 Z32 Z33 Z34

Z40 z41 7"42 z 4 3 Z44
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(Z 1 3 )4 = -(Z 0 2 ) 4x = -(Z02)2 x =-xy.

(Z 2 4 ) = -(Z 1 3) /x = y
4 4

(Z2 3 ) = -(Z 1 2)x=-(Z 1 2 )x x

(Z3 4 ) = -(Z 2 3 ) 4x = + 1.

2(Z 0 3 ) 4= Y(Z 1 3 ) 4- X(Z2 3 ) 4= - x(y -_x).

(Z 1 4 ) = y(Z 2 4 ) - x(Z 3 4 ) =y -x.

(Z 0 4 ) 4= Y(Z 1 4 ) 4- x( 2 4 ) 4= y(y2 -2x).

The results agree with Table 2, which lists the results obtained

through fundamental theorems.

We have thus shown, at least for the order sequence 2, 4, and 6,

that the Z matrix of order n can be derived from the Z matrix of

order n-2.

5. THE GENERAL PROGRESSIVE EVOLUTION OF THE

Z MATRICES

The fundamental theorems for deriving the matrices [Zik] 4, 4

and i 6,6 can also be used to derive Z matrices of higher

order than 6. The higher the order, however, the more tedious

the procedure becomes. It is much simpler to derive the Z matrices

progressively, as in Sec. 4,where the matrix of order 6 was

derived from that of order 4, and the matrix of order 4 from that

of order 2. That the Z matrices through order 6 are consistently

interrelated warrants the induction 4,5 that we can derive the

Z matrix of order 8 from that of order 6, the Z matrix of order 10

from that of order 8 and so on. This has not been taken for granted,

D
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however, and the results for all Z matrices through order 12 have

been painstakingly proved step by step. No attempt has been made

to find a general proof.

The step-by-step proof is relatively easy. The polynomial

f(z) = nI (z2+yVz+x V (5.1)
v=l

is first replaced by the polynomial

f 0(z) = (z 2 + yz + x)n/ 2  (5.2)

Equations (2. 2) then change to the following:

A -1
n

An- 1 = y

(5.3)
A n_3  y3  + (n/2I ) (n2-1)

An /=(n42) y4 + (n/ 2)x (n/2-1) y2 + (n/2) x2

In the transformation of Eqs. (2. 2) to Eqs. (5. 3) the previous com-

binations of xv and YV are transformed to powers of x and y multiplied

by binomial coefficients. By Eqs. (5.3) we can prove that if any

row in the Z matrix of order n yields a consistent equation [as for

instance Eqs. (3. 5a) through (3. 5e)] the row in the Z matrix of

order n+ 2 will also yield a consistent equation, and vice versa.

Both matrices can be developed progressively or retrogressively,

as described in Sec. 4.

It is of course easier to use the retrogressive procedure, which

yields the Z matrix of order n-2 from that of order n after the

last two rows and columns are deleted and the residual elements
2divided by x . When a certain order is expected to be the limit
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for practical applications, it is sufficient to present only one row

or one column of the limiting Z matrix. This will yield all the

elements of the matrix, as well as all the elements of the Z

matrices of lower order. Table 3 presents the elements of Row 0

of the Z matrix of order 12. All the elements of the Z matrices

of orders 2 through 12 can be found from this table retrogressively.

The Z matrix of any order higher than 12 can be found progressively.

The results are consistent. They have been proved up through

order 12 and there is nothing to indicate that at the higher orders

there can be any disturbance either in the Z matrix itself or in its

interrelationship with its neighbors. In Sec. 6 we therefore

venture to state some theorems about the structure of the Z matrix

and its relationship between adjacent matrices.

6. THE Z MATRIX THEOREMS

Theorem 1

With An = 1, given that

n k n/2
f(z) =k ' A k =z T (z +yvz+xv)

is a polynomial with real coefficients Ak and of even order. Com-

parisons of its coefficients in the sum-and-product form will yield

a system of n+ 1 equations:

Zink n n-kn n[=o.

The elements of the square matrix [Zkl are simultaneous

polynomials in x and y. The pair x, y stands for any pair xv. Yv"

The matrix is called the Z matrix.

Theorem 2

The elements Z in the main diagonal of the Z matrix are zero.

The other elements of the matrix are partly symmetric, partly

skew symmetric, according to

Z = - Zki (- 1 )i+k

mm mm mmik kim
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Theorem 3

In the diagonal direction of the Z matrix,

Zik = - Z(i l)(k- 1)/ X.

fheorem 4

In the column direction of the Z matrix,

Zik = YZ(i+l)kZ xZ(i+ 2)k"

Theorem 5

From Theorems 2, 3, and 4, the elements of the Z matrix are

known if the elements of any row or of any column in the matrix

are known.

Theorem 6

The Z matrix of order n-2 can be retrogressively derived

from the Z matrix of order n by deleting the last two rows and

columns in the matrix array of order n and dividing the residual

elements by x 2

Theorem 7

The Z matrix of order n+ 2 can be progressively constructed

from the Z matrix of order n by multiplying the elements in the
2

matrix array of order n by x and applying theorems 3 and 4 to derive

the elements in the additional two rows and columns.

From these theorems it is evident that when the elements of an

nxn Z matrix are known, then the elements of all lower even-order

Z matrices are immediately available. For example, the elements

in the square area marked by Z 2 2 ... Z2n and Z 2 2 ... Zn 2 in the nxn

matrix are exactly the same as those in the square area marked

by Z 0 0 ... ZO(n_ 2 ) and Z 0 0 ... Z(n_2 )0 in the (n-2) x (n-2) matrix. *

*lThe author is obliged to John Ramsey, Lt, USAF, who
noticed this identification during a diligent reading of the first
draft of this report.
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Likewise, the elements in the square area marked by Z 44..Z4n

and Z 44- Zn4 in the nxn matrix are exactly the same as those in
the square area marked by Z22... z2(n-2) and Z22... Z(n_2)2 in the

(n-2)X (n-2) matrix, as well as those in the square area marked
by ZOO...Z0(n-4) and ZOO0.. Z(n_4)0 in the (n-4)X (n-4) matrix.

Obviously, this congruence provides a more convenient method
2 4

than dividing the proper elements by x or x and so on.

7. REARRANGEMENT OF EQUATIONS DERIVED FROM COEFFICIENT
COMPARISONS

7. 1 Two Rearrangements of the Y Matrix Equations Derived From
Comparing Coefficients

In Sec. 3. 1 we compared coefficients and derived a system of

n+ 1 equations in which the real coefficients A0 ... , An had the

leading role. We can rearrange these equations so that either the

unknown x or the unknown y has the leading role. We prefer

to choose x for the part. As an example, let us rewrite Eqs. (3. 5a)

through (3.5e):

xA3 -x2(yA 2 +A 1  + x(y 2A+2yA0 ) - y 3 A0 =_0 (7. la)

x -x2 A 2  + x(yA 1 + A0 ) - y 2A 0 =0. (7. lb)

x 2 (y-A 3 ) + xA 1  - yA 0 EO, (7. lc)
-x + x(y 2 -YA 3 +A 2 ) - A0 =0, (7. 1d)

- x(2y-A 3) + (y 3 -y 2 A 3 +YA-A 1) 0. (7. le)

Except for formal multiplication by -1, Eqs. (7. la) through

(7. le) are the same as Eqs. (3. 5a) through (3. 5e). In matrix form they

are written

[Yikxk]4, 4 =Yik [4,4 4 - (7.1)

Equation (7. 1) contains the Y matrix. This is a square matrix with

5 X 5 elements Y ik These elements are polynomials in y only.

The coefficients of these Yik polynomials are the original coefficients

A0 , ... , A 4, and thus real.
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If, instead of x, we had chosen the unknown y, the equation

would have contained the X matrix, written

IXiky 4 k 4, 4 = Xik ] = k . (7.2)

A counterpart of Eq. (7. 1) for the Y matrix, its development is

therefore alternative and will be omitted.

7. 2 Structure of the Y Matrix

Since the theorems presented in Sec. 6 enable us to find the

Z matrix of any order it may seem superfluous to devote more

than casual attention to the Y matrix. The Y matrix, as we have

seen, results only from rewriting equations already known. Its

structure, however, is such that its characteristic properties enable

us fo find all the elements for any order without reference to any

of its adjacent matrices. Because it deals with polynomials in

only one unknown, y, it is also more amenable to solution than the

Z matrix with its simultaneous polynomials in x and y.

The Y matrix of order 4, our first example showing the pro-

perties of its structure, has the extended form:

Y 00 Y 01 Y02 Y 03 Y 04

Y10 Yll1 Y12 Y13 Y 14

Y20 Y21 Y22 Y23 Y24i 44 (7 .3)

Y30 Y 31 Y 32 Y33 Y34

Y40 Y 41 Y 42 Y 43 Y 44

From Eqs. (7. la) through (7. le), (7. 1), and (7.3), we see that the

following elements of the Y matrix are =- 0:

00 =l1 = Y20 = 2 30 = Y40 0

Y21 = 31 Y 0 (7.4)

Y 42 -0
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Examining the Y matrix of any order, we find that, in general,

Yi 0  =0 (0 <=i <=n)

Y 0 (2 <i <n)ii -

Yi2 -0 (4 < i < n) (7.5)

Yn(n/2) =Q

Let us now take a closer look at the elements in the main

diagonal. In the matrix 1ik4 they are:

Y 0, as we know from Eq. (7.4).
00

YI 1= A 4  1 1. Also, YII = yY 0 0 + A4 "

Y 22 y - A Also, Y2 2 = yYI1 - A3"

Y33= y - yA 3 + A 2 . Also, Y33= YY2 2 + A 2 -
•3 2

Y4 4 =y - y2A3 + YA2 -A,. Also, Y44 = YY33 - AI"

We see that in the Y matrix of any order, the elements of the

main diagonal are

Yii = YY(i-l)(i-l) - An+ 1-i (-l)n-i (7.6)

where 0 < i < n. Thus, the elements of the main diagonal of the

Y matrix can be found immediately for any order n by an iterative

procedure.

Let us now consider the elements arranged in the upper

parallel to the main diagonal. This parallel, the co-diagonal,

connects the element Y01 with the element Y34 in the Y matrix

of order 4. Its elements are:

Y0 1 = A 3 ' Y 12 =-A 2, Y 2 3 = All Y 3 4 = -A0

We see that in the Y matrix of any order, the elements of the co-

diagonal are the coefficients of the polynomial f(z), those with an

even index being opposite in polarity and those with an odd index
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being the same in polarity, as given by

Yi(i+ 1) Ani 1 - )n-i (77)

where 0 < i <n-1. Thus, the elements of the co-diagonal of the

Y matrix are immediately known by the coefficients of the poly-

nomial f(z).

Investigating the structure of the Y matrix in the column direc-

tLon, we first consider the area below t he main diagonal and then

the area above the co-diagonal. Since both areas of the Y matrix

of order 4 are too small to make the structure evident, we will use

the Y matrix of order 6. Its elements are listed in Table 4 and

known, since we know the elements of the Z matrix of order 6.

The elements of the main diagonal of the Y matrix of order 6

are, from Table 4,

Y 0,= y 3 -y 2A 5 YA4 -A 31 44y4 5 +3A 2

Y 1 A6 - 1, Y5 5 =yyA 5 + y A 4 -yA 3 + A 2

Y22 y-A5'6 = y 5-y4A5 + y3 A4 - y2 A 3 + YA2 -A 12
Y3 3 = y -YA 5 + A 4

From this we see that the formula

i-1 i-(A+i) A (7.6a)
i =0 n-p

is more practical than Eq. (7.6) for finding the elements in the

main diagonal.

The elements of the co-diagonal of the Y matrix of order 6

are, from Table 4,

Y l A Y12 A 4'

Y23= A 3, Y3 4 =- A 2

Y45= Al, Y 5 6  - A 0 "

This result of course agrees with Eq. (7. 7).
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In the area below the main diagonal the elements below and

including Y 0 0 , Y 2 1 ' Y4 2 ' and Y63 are identical with zero, as we

know from Eq. (7. 4). The elements still to be determined below

the main diagonal are therefore one each in Columns 2 and 5 and two

each in Columns 3 and 4, as the following array shows.

o N Y01." 02 Y03 Y04 Y05 Y06

0 Yl1 Y12 Y13 YI4 Y15 Y16

0 0 Y22 Y23 Y24 Y25 Y26

0 0 Y32 Y33 Y34 Y35 Y36

0 0 0 Y4 3  Y 4 4  Y45 Y46

0 0 0 Y53 Y54 Y55 Y56, co-diagonal
1- --- -- ----

0 0 0 0 Y6 4  Y65 Y 66 main diagonal

The elements not identical with zero in the diagonal immediately

below the main diagonal are obtained by partial differentiation.

1 aY 22 1 aY33Y3 2- 1 *y Y 43 =T a

1 Y44 1 aY 55Y54 1 *' 7y- 6 Y5 =1" * y-

The fraction -1/1 is explained when we consider such elements in

the next lower diagonal.

aY32 43
Y I = , YS3

1 54
Y42- 2 ay =,Y53 =-•ay

IaY 54Y 64 21 a y

Finally,

1 aY53
Y 6 3 =3 -ay 0

fits in the same structure. It is apparent that the successive
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partial differentiation yields the statements in Eqs. (7.4) and thus

makes those equations superfluous.

It would of course be premature to draw general conclusions

from the results obtained for order 6 alone. The results obtained

for the Y matrix of orders higher than 6 are, however, consistent

in showing that starting from the element Yii in the main diagonal,

where i=0,

~(~lay - .. ~ ay (i i I~)i (7.8)
Y(i+ 1)i T -ý- I Y(i+ 2)i =-½ay~i ~

2 ay (78

i 1 aY(i+ 2 )i 1 aY(i+ p+ l)i
(i+ 3)i 3''(i+p)fp 8y

until the partial differentiation yields zero for p = i. Hence, it can be

stated that once the elements in the main diagonal are known,

all the elements in the area below this partition can be obtained

from Eq. (7.8).

Before we investigate the area above the co-diagonal, let us

digress for a moment. Table 4 lists the elements YOI* ..."Y 0 6 '

in Row 0 of the Y matrix of order 6. The elements above the

main diagonal in Row 1 are:

I aY01 +1Y3 I aY04Y 12 =+ T -y Y13 = 2 ay Y14 + 3 ay

1 + Y05a1 ay 0 6
Y15 = 4 y Y16 5 ay

Y12 being an element of the co-diagonal. The elements above the

main diagonal in Row 2 are:

1 ay13 ay 1 4  + IY15
23 +-1 Ty Y24 2 ½ay ' 25 ay

1 ay 1 6
26 = 4 ay

Y23 being an element of the co-diagonal. The elements above the
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main diagonal in Row 3 are:

S=1 'Y 2 4  aY 2 5  y +iaY 2 634 1 ay 35 2 ay 36 3 ay

Y 3 4 being an element of the co-diagonal.

The elements above the main diagonal in Row 4 are

_1 aY 3 5  + aY 3 6Y45 + 1 ay ' 2 ay

Y4 5 being an element of the co-diagonal. Element Y 5 6 ' above the

main diagonal in Row 5, is the last element in the co-diagonal:

_ 41 aY 46
Y56 1 ay

This iterative partial differentiation starting with the elements

in Row 0 will yield the elements above the co-diagonal in the Y

matrix of any order. The elements of the co-diagonal cannot be

thus obtained, but these are already known.

We can also find the elements above the co-diagonal by an

iterative integration, although this procedure leaves the constant

of integration in doubt. To show how it workes we will compile

the results for the Y matrix of order 6. We proceed by starting

with each element in the co-diagonal, going up the columns by

integration.

Since Y 0, and Y is an element of the co-diagonal, the

element Y02 is the first that has to be found in the Y matrix of any

order.

Column 2

Y 1 2 = - A 4 is an element of the co-diagonal,

Y02 = -yA 4 - A 3 (see Table 4)

= fY 12ay- A 3 .

Column 3

Y23 = A3 is an element of the co-diagonal,
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Y 1 3 =yA 3 + A 2 (see Table 4)

= 'JY 2 3 'y + A 2 ,

Y03= y2 A 3 + 2yA 2 + A 1 (see Table 4)

= 2fY 1 3 ay + A 1 .

Column 4

Y 3 4 =- A 2

Y - YA2 - A1 = lfy 3 4 ay - Alp

Y 14 =- y 2A 2 - 2yA1 - A0= 2JY 2 4 ay - A0,

Y04 3 y3A 2 - 3y2A1 - 3yAo = 3fY 1 4 ay- 0.

Column 5

Y45 A 1I

Y 3 5 = yA 1 + A0  i 1 fy 4 5 ay + A0,

Y25 = y 2 A + 2yA0 = 2fY3 5 ay + 0,

Y15 = y 3A 1 + 3y 2A 0 = 3fY2 5 ay + 0,

Y0 5 = y4A1 + 4y3A 0 = 4fY1 5 ay + 0.

Column 6

Y 56 - A 0 .
Y 46 - A0 = 1 fY56ay- 0,

Y36 = - y2A0 = fY 4 6 ay -

26 - yAO = - 0,

Y16 =- y3A 0 = Y326aY - 0,

Y0 6 = - y5A 0 = 5fY16aY- 0.

The procedure used to achieve these results, which hold for

the Y matrix of any order, is synthesized from the following rules.

The next element in ascending order from the co-diagonal in any

column is obtained from its preceding one by an integration mul-
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tiplied by the sequence of integers 1, 2, 3, until Row 0 is reached.

The descending sequence of polynomial coefficients, excluding

the coefficient of the co-diagonal element, provides the constants

of integration. The sequence being exhausted with A0 , the re-

maining constants of integration are taken as zero. The polarity

of the constant of integration is determined by the polarity of the

polynomial coefficient appearing in the co-diagonal: in the odd-

numbered columns; the sign is the same; in the even-numbered

columns, the sign is opposite.

More generally stated, these rules for obtaining all the ele-

ments above the co-diagonal are mathematically expressed in

the iterative procedure of integration given by the following.
Y i(i+ 1) = A n~(i+ 1) (_ l)n-i

is an element of the co-diagonal known from Eq. (7.7). The ele-

ments in Column (i+ 1) with additional integration constants are:

Y(i-1)(i+1) = lfyi(i+l) 8y + An-i-2(-l)n-i'
Y(i-2)(i+1) = 2fY(i-1)(i+1) ay + An-i_3 )n

Y(i-3)(i+l) = 3fY(i- 2)(i+l) ay + Ani_4 (I 1)ni

(2i+1-n)(i+ 1) = (n-i- 1)fY(2i+ 2-n)(i+ 1) ay + A0 (- i)n-i

From here on the integration constants are zero.

"Y(2i-n)(i+ 1) = (n-i)fY( 2 i+ 1-n)(i+ 1) ay + 0,

"Y(2i-n-l)(i+1) =(n-i+ 1)1 Y( 2 i.n)(i+ 1) 'y + 0,

" 0(i+ 1) = ify 1(i+ 1) ay+ 0.

Here we reach Row 0.

Thus, an element in the area above the co-diagonal is

Y(i-)M)(i+ 1) = jY (i-.. + 1 )ay + A n-i-W + 1(_ l)n-i (7.9a)

from R•ow i- l(p = 1) to Row 2i-n÷ 1(p =n-i- 1) inclusive,

and

Y= fY(i-A + 1) ay+ 0 (7.9b)

from Row 2(i-1)-n(p =n-i) to Row O(p =i).
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The progressive integration is less complicated than it appears.

The computation is very easy if we start with the last column n in

the Y matrix.

To find the elements in a particular row of the Y matrix we can

of course skip some of the steps in the partial differentiation, as

well as in the integration, and still get any of Eqs. (7. 1). This

bears out the earlier statement that any of Eqs. (3. 6) can be ob-

tained immediately.

8. THE Y MATRIX THEOREMS

Theorem 8

The n+ 1 equations derived from comparing the coefficients of

a polynomial of even order n with real coefficients can be rearranged

to derive a matrix with elements Yik that are polynomials in one

unknown, y. The matrix is called the Y matrix lYik]
Sn, n

Theorem 9

Beginning with the diagonal element Y00 = 0, the elements of

the main diagonal of the Y matrix can be obtained iteratively from

Yii = YY(i-1)(i-1) - An-i+ 1(-l)n-i"

Theorem 10
The co-diagonal of the Y matrix is defined as the parallel to

the main diagonal comprising the elements Y01, Y I2, . Y'(n-l)n"

Its elements are given by

Yi(i+ 1) = A n-i- 1(- 1)ni

Theorem 11

The elements below the main diagonal of the Y matrix can be

obtained by a process of successive partial differentiation from

one element to the next one within each column according to Eqs. (7. 8).
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Theorem 12

The elements above the co-diagonal of the Y matrix can be ob-

tained by a process of successive integration from one element to

the next one within each column according to Eqs. (7. 9a) and (7. Sb).

9. A NOTE ABOUT THE APPENDIX

The appendix contains workcheck tabulations of the Z and Y

matrices and their elements for the even orders 2 through 12.

Although the report is complete without them, they are provided

for the reader's convenience in following the practical demonstra-

tions. Comparisons of the matrix elements within a particular

order with those of other orders will disclose many properties

other than those covered by the 12 theorems. The tabulations

2-Y to 12-Y, for instance, show that the elements in the last

column of the Y matrix, except the element in the last row, represent

a geometric progression whose common ratio is y and first term A0 .

All such additional properties can be elicited as consequences of the

theorems, which are sufficient to obtain the matrix of any order.
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TABLE 1. Comparison of Coefficients of Orders 2, 4, and 6

ORDER 2 ORDER 4 ORDER 6

A0  X I ZIX? X1 XPX 3

A, ylYX 2+ Y2XI yX 2X3+ y2xK 3+y~Ix 2

A2  -Ix 1+ X?+ Yl Y2  xIX2+X, X3+X?-X3+XY23+X2YIY3+X3ylY2

A3  Yi + Y2 Y,(xj2+x3)+ y2 XjI-X)+ YJXI+X2) + yY# 3

A4 -X,+X? 2+X3+ AY2+yAY 3+ Y2y3

A5  yl+ Y2+ Y3

A6
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TABLE 2. Elements of the Matrix[Iz.d ,j of Orders 2, 4, and 6

ORDER 2 ORDER 4 ORDER 6 ORDER 4 ORDER 6

-x, -t 0 X 3X 5  z 23"z 32 -X

ZeZ2 y 4 y Z24!"-Z42  y 2 y

04Y 2-4 2i) X2y(yZ 2K) z 26w -Z62  y(y2-2x)

Z05- Z50 -X(y'-3Xy t +X2 ) Z34 . z43  +1

Z0-Z0y(y 4-4xy2 + 301) Z 3 5 -Z33 -KY

Z1 1 +1 I X2 4z 36- Z63  - X

Z13 m--z 3 1 - X3yZ 45- Z54

ZA Z 4 1 yzi 2_X 2 (y 2 KX) Z46 .Z 64 4  y

e =-Z 51 -XY(y 2-2K) Z5*- Z65 +I

ZIe =- 6 y 4 -3xy2 +x22
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TABLE 3i. Elements of Row 0 of the Z Matrix of Order 12

Z 00 0

zO -zo -X 11

z 02  =--z 2 0  x 10y

_703  - z 3 0  -X
9(y2 -_X)

Z4 "- Z0Xey(y 2- 2X)

Z05 Z50 xTy 4 -3xy 2+x2)

S6 W-Z 60 6y(y4 -4xy2 + XF)

Z T m 7 x5(y6-5Xy4+6-xey 2 -X3)

Ze =-zo x 4y(y 6 -6xy 4+ lox 2y 2-4X)0

-9 Z90  ..x3(yS..7xy6 +15x?-y4-oX3 y 2 +X4

Z01 ZI 0' X~(ye- 8xy6 + 216~4 -20x~Y +504)

ZO-11 Z 18 - x(y'0- 9xye +28x?-y6-35X3y4+ 15X4 y2-_X5)

Zo -Z 1,2!0 Y(y'0-I~xY8+ 36x2y.w6- 56xOY4 +35X~y2 - 6x5)
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TABLE 4. Elements Not Identical With Zero in the Y Matrix of Order 6

Y01 = A5  Y1 I + 1

Y0 2 = -(YA 4+A) Y1 -A 4

y - y2A3+2yA 2+A1  Y1 =yA3+A2

Y 0 4 = -y(y 2A2+3yA,+3A0 ) -1 -(Y2A2+2yA,+A0)
Y6- 93(YAI+ 4Ao) Y - ~Y2A I+3Ao)

Yos=- -y 5A 0  y6m- y4A0

Y22 = y-A 5 Y32= -
Y23 = A3  Y33 = y2- yA5+A4

Y24w -(YA 2+A,) Y34=- -A2

Y25= Y(YA 1+2Ad Y35 w yA, +A0

Y2ro- -y3A0  Y365=- .yZA 0

43=- -(2 y-A 5) -5 + 1

Y4 4 = y3-y2A 5+yA4-A3  Y54. = -(3Y2 -2yA5+Ad)
Y4.5  A, Y5 5 -MY 4- y3A5+Y 2A4-YA3+A2

Ye.. = 3y -A 5

Y6 -(4y 3-3y 2A5+2YA 4-A 3)

-6 =Y 5 - Y4A5+Y3A4-y2A3+YA2-Ai
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ORDER 2

Polynomial f(z) = z2 +A, z +A0

Z-Matrix (elements see TABULATION 2-Z)

Zoo Zol Z0 2

zlo zil zl 2

z 20 z21 z2 2

Y- Matrix (elements see TABULATION 2-Y)

0oo Yo0 Y02

o Y11 Yl2

0 0 T22
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TABULATION 2-Z

ROW 0 ROW I

zOI - -lo x z1 2  z 2 1z0 2 - Z1 -z+
Z02 ".Z20 "y

TABULATION 2-Y

ROW 0 ROW I ROW 2

Yoo - 0 Y "i1  + 1
Y2 2 -y¥- A1

YO 1  A1  T12 ' - A0

Y02 = - YAo
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ORDER 4

Polynomial f(z)=z 4 +A3z3+ ..- +Aiz + A0

Z- Matrix (elements see TABULATION 4-Z)

"Zoo zol zo2 zo03  Zo4

Zo10  Zl Z1 2 z13 Z14

Z20  Z21  722 Z2 3  Z24

z 3 0  z 31  z 32  z 33  z 34

z40  Z41  Z42 Z4 3  Z4

Y-Matrix (elements see TABULATION 4-Y)

00o Y0i Y02 Y 03 Y 04

o Y1 Y12 Y13 114

0 0 T22 Y23 T24

o 0 T32 Y33 Y 34

0 0 0 Y 3 Y J

43 44
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TABULATION 4-Z
ROW O ROW I

Z01 Zi X Z12 Z 2 1  'x2

Z0 2  ' - Z2 0  - 2 y13 Z-31 ý --

Z 0 3  w 30 -x(y -zx 14 - Z41 - -x2

Z04 = 3 -z -2x)

ROW 2 ROW 3

23 z 32 x z43 -+1

Z24 z . 42 =y

TABULATION 4-Y

ROW 0 ROW I

Yo0  = 0

YOI m A 3 
Yl2= - A2Y02 = - (YA2  + A1 ) Y = - A 0

yO3 = y(yAI + 2Ao) YI3 = yA y+ AO

Y = 0 y3 AO YI 4 ="yAo

ROW 2 ROW 3

Y2 2  = y - A3  Y32 - - 1

Y23 m A1  Y33 ' ".2 _ YA3 + A2

24 ROW 34Y3 = - A

Y3 43 (2y - A3 )

y 44= Y3 _ y 2 A3 + YA 2 - A,
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ORDE R 6

Polynomial f(z)=z 6 +As 5  + " +Alz +Ao

Z-Matrix (elements see TABULATION 6-Z)

Zoo zO1 z02  Zo3  Z04  z05  Z06

Zi0 zil z12  z13 z14  z15  z16

Z2 0  Z2 1  Z2 2  Z2 3  Z2 4  Z2 5 Z2 6

Z30  Z31  Z32  Z33 Z34 Z35  Z36

z40  z41  z42  z43  Z 4  5 z 46

Z50  Z51  Z52  Z53 z54 Z55 Z56

z6 0  z6 1  z6 2  Z63  z64  Z65  Z66

Y-Matrix (elements see TABULATION 6-Y)

"0OO0 Y01 Y02 Y03  
1 Q04 Y 05  106

0 Y11 Y12 Y13 Y 14 Y15 .16

0 0 Y 2 2  '123 Y24 IY25 'Y26

0 0 Y 32 Y 33 Y34 Y 35 Y36

o o 0 Y 4 3 Y 4 4  Y 45  Y 46

o 0 0 Y53 Y54 Y55 Y56

0 0 0 0 Y64 + Y65 Y66
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TABULATION 6-Z
Row 0 ROWI

z 01 z IQ0 
Z1 2

102 Z 20 - 14 132 312 .3

Z03  Z3 ., -x3(y2 . ) Z1 -Z). . X2Y2-x

Z0 - -0 _ 
2
y(Y

2 
_ 2x) Z1 . -z 1_Xc(72 -2x

Z05 ~ ~ ~ ~ ~ ~ ~ 1 -5 xx2_3y2*Y)h - Z6 - 3xy 
2  

y 2z

Z06* Z60 _ -2 _34X2 + 74) 16*2 *

ROW 2 ROW 3

2 23 - 132 - - x3 34 . Z43 . X2

Z2 - 2 *x 
2
7 Z35 . -1 Z 5 . 7t

125 " 152 '- -x(y 2  
X) Z6 1 63 'Y2 -z

Z76 - 1 62 " 7(7Y2 - 2z)

ROW 4 ROW 5

lo- 154 *- Z56~ Z615-

Z4 - Z64 - y

.TABULATION 6-Y
ROW 0 ROW I

Yoo . 0 -+1

Yoi - A5  Y12 A4

Y02 ' - (YA4 + A3 ) Y13 ' YA3 + k 2

YO, .7A 3 *2YA2 +Al 1 - - (y2A22~

Y4- yy22 37, * 3A) 15 .Y2 (yAj + 3A 0 )

Y5- y3 (YA1  4A0, Y16i - -Y
4
A0

Y6- - y 
5
A0

ROW 2 now 3

T2 2  y -A'5  T32 -- 1

Y23 -A3Y3 7 A5 +A 4

Y24 - (A2 +Al)T34 - - A2

-2 y(yA, + 2A 0) 5 yAl -A0

Y2 - 03A y36 2 YA

ROW 4 ROW 5

Y43 - - (2y - A5 ) T5 -. 1 2_2A

T44 - Y)- y
2
A5 - A4 -A 3  Y54 -- (3y 2 - . 4 )

-4 "Al Y55 - y 4 - yA 5 . 2 A 4 -7A3A 2

Y16- yA0  Y56 - - A0

ROW a

64- 3Y - A5

Y65 - - (4y3 - 3y2A 5 + 2yA4 - A3 )

T66 'y 5 - yA 5 *y3A 4 - A 3 *YA 2 - Al



ORDER 8

Polynomial f(z)=z8+A-zj7 +." +A z +Ao

Z-Matrix

(elementp -ee TABULATION 8-Z)

zoo Zol Zo2  Zo3  z04  zo5 Zo6 Zo7  zo-

z10 z11 z12  z13 z14  z15 z1 6  z17  z18

z 2 0  Z2 1  Z2 2  Z2 3  Z2 4  Z2 5  Z2 6  Z2 7  Z2 8

z3 0 z31l z3 2  z3 3  z3 4  z 3 5  z3 6  Z3 7  Z3 8

Z4 0  Z41  Z42  Z4 3  Z44  Z4 5  Z4 6  Z4 7  Z48

Z5 0  Z5 1  Z5 2  Z5 3  Z5 4 Z5 5  Z5 6  Z57  Z5 8

Z6 0  Z6 1  Z6 2  Z6 3  Z6 4  Z6 5  Z6 6  Z6 7  Z6 8

Z7 0  Z7 1  Z7 2  Z7 3  Z7 4  Z7 5  Z7 6  Z7 7  Z7 8

Z8 0  Z8 1  Z82  Z8 3  ZE14  Z8 5  Z86  Z87 Z88

Y-Matrix

(elements see TABULATION 8-Y)

"0oo Yo Yo2 0o3 Yo04 Yo5 Yo6 Yo7 Yoe

0 Y11 .12 Ti3 Y14 Yi5 Y 16 Y17 Y.8

0 0 Y22 123 Y24 Y25 1 26 Y27 Y28

0 0 Y32 Y33 Y 34 T 35  136 T37 .38

o 0 0 Y43 144 1 45 r46 147 T49

o 0 0 5 154 , 55 Y56 Y57 Y 5

0 0 0 0 Y64 Y65 Y66 Y67 Y68

0 0 0 0 174 175 Y76 Y77 Y78

O 0 0 0 0 Y85 786 Y87 'lEd

| I F
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TABULATION 8-Z

now 0 ROW I

zol a zlo - X?

Z2a- -z 2 0 0 267 z 1 21 .x

Z3- Z30 w- _5 (Y2 _X)1a - z 31 a X

.04 _ Xz0 .47(72 _2z) -14. Z41 - X4(y2 _-X)

Z05 a Z50 0 "X3 (22 - 3172 Y 4) Z1 - Z5 _x37(72 - 2x)

Z0 -- Z60- .227(312 41O2,+J1) 21 ' Z61 wx 2 (N2 _3172.7 4)

Z07 a 70 w -XY X4*622_X) Z7aZ 71 , -xY(3x 2 - 4n2.Y4)

Ze- ZO 17(76 -6xy74,+101272 - 4Z3) Z* is , Z.7 6 _ 5xy4 +6x 2 72 X3

ROW 2 ROW 3

z23  z3 - sm-I

-2 z4 2 -x~y *Z34 -- ~

Z2 z52 - .(Z5- -Z 53  y

Z2 -z 6 2 a 2~(22)z36 Z6 x2(y2-X

Z2 Z7 2 v .x(x2 .3172 *74) Z7- -Z 7 3 mXY(Y
2 - 2x)

Z28 Z82 -7(322 4%2 + 4) Z38  Z8 m 22 _ xy2 + 4

ROW 4 ROW 5

Z45 - Z54- X

Z4 6 xz .27 y 
Z6 = Z65, .12

247 - Z.74 - .X(Y2 x) 57- Z75 - -n

Z48 a -Z04 .7(72.-2x) Z58 - Z85 aY2 - x

BOW 6 ROW 7

Z67 - Z76 - xz7 277 + -1

Z618 - Z96 -
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TABULATION 8-Y
ROW 0 R OWI

ro* . 1

(y -A 7 Al "i -A

102 - - (Y6 - 5 Ti3 'A *A6

T0 ,Y2 5 * 2A 4 * 3 
T3-Y+A

To.- - (fA4 - 3y2A~ 3yA2 AL) Y14__ 2A4*223*A)

Yo., - y(Y3A 3Ti 5 - y3A3 *3yA2 +.37£I Ao

3O - ( 'A 472£ 6YAl 4Ao) T1 Y2 y2A+ Y,+AO

Y 6 - - Y3(y2A2 * 5yAl ' i0AO) y -~ Y4 YA, -5A i+)

-0 Y5 (yA fi ) 1 T 7  6 ~LA~*5 0

yo 7AO 
YS yA

NOW 2 ROW 3

T22 ' k7 T32 -1

T23 A5 T33  Y~2 - *A -£6

24- - (YA4 * A£3) T34  - A4

T2 5 - A3 *27A2 +A, T35 *YA * A2

T26 - -7(72A2 43YAI 3AO) 36 -y2A# 'l+A)

T27 - 3YA AO) 737 - y (YA1 + 3 Ao)

-2 - y5AO TOe - - y'AO

ttOW 4 ROW 5

7 43 - - P27- A7) 753 -. 1

Y4 3 2 ' 7 +y6 A5 Y5 -- 3 OY2 -2A7 +A6)

T45 - A 3 Y5 y" .31-3A 7 * 2A6 -7A5 A4

Y6- - C7A2 *A,) T5 A~2

747 - 7(YAi 211O) 757 -yAl * Ao

4#- - 73AO y5,§ T2A

now 6 ROW?7

Y64 *3y-A7 774 -- 1

Y65 ' -(473 -3Y2A7 *27A6 -A 5) Y75 _6Y2 -37A7 + 6

Y66 - y5 -y4A 7* y3A6 -y2A5 *yA4. -A 3 Y76 - -(5y4 -4y3A 7 +3y2A6 - YA5 A4)

67- Al T77'Y 37-yA -yA 24Y3A

T68 *YAO Y78 A O
ROW a

-8 - (47 YA~

Y86 -ioy3 -6yr2A7 +3YA6 - A5

87- - (6yo -5v4A7 -4y3A6 -3Y2A, 27A4 Y,

ye - _y67 *6£7.5A6 -74A5.*73A4 2A3 ,A2 - A,



42

ORDER 10

Polynomial f(z) = z'0 +A9 z9 + ... +A, z +A,

Z-Matrix (elements see TABULATION IO-Z)

Zoo Z01 Z02 Z03  204 Z05 Z06 Zo7 Zoe Zo9 Zo(2o)

Z10 Zll z12 Z13 Z14 Z15 Z1 6  Z17 Zia -19 Z1 ( 10 )

Z20 Z21 222 Z23 Z24 Z25 Z26 Z2 7  Z2 8  Z29 Z2 (10)

e30 Z31 Z3 2  233 z34 235 z36 Z3 7  Z3 8  Z39  Z3( 1 0 )

Z4o z4.1  Z4.2  Z 43  z44 Z45  Z46  z47 Z4 8  Z49  Z4( 1 0 )

Z50  Z51  z52 z53 z54 z55 z56 z57 z58 Z59  Z5(10 )

Z6 Z61 Z62 Z63 Z64 Z65 Z6 Z67 Z6 Z6 Z6(10)

Z70 Z71 Z72 Z73 Z74 Z75 Z76 Z77 Z78 Z79  Z7 (10)

Zoo zai Z82 Z83 Z84 Z*5 z86 Z87 Z8 Z89  Zs(1o)

Z90 Z91 Z92 Z93 Z94 Z9 5  Z96 Z9 Z98 Z9 9  Z9(10)

Z(1o)o Z(10)1 Z(1 0 )2 Z(10 )3 Z(10)4 Z(10)5 Z(10)6 Z(10)7 Z(10 )# Z(1 0 )9  Z(1o)(1o)

Y- Matrix (Olements see TA13ULATION IO-Y)

0oo 101 702 703 Y04 105 Y06 107 70S Y09 Yo(10)

0 Ti1  T12 Y13 24i 715 Yx6 Yi7 Y18 T19 Y1(10)

0 0 Y22 ¥23 Y24 ¥2c Y26 T27 Y28 Y29 T2(10)

0 0 Y32 133 134 135 Y36 137 138 139 ,3(20)

0 0 0 143 14JA Y45 1.6 YAW Y Y49 Y4(10)

0 0 0 153 154 155 Y56 157 158 759 5(1.0)

0 0 0 0 764 Y65 766 Y67 Y68 Y69 Y6(10)

0 0 0 0 174 175 Y76 7777 778 179 77(10o)

0 0 0 0 0 185 Y86 r87 ye s g9 Ys (oo)

0 0 0 0 0 195 Y96 197 Y98 199 Y9(10)

0 0 0 0 0 0 Y(10)6 Y(10)7 Y(10)8 ¥(10;9 Y(10)(10)
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TABULATION IO-Z,

ROW 0 ROW I

Z - .1 ax7 -29

020 . - 130 z 72 Z23 - 2 ,

Z 03 . Z3 . -zj 2 _ )1 . .~ Z3 1 ' - -7Y

-O . Z0 . X5(.
2 -3XY

2 
.Y4) 15.- X51 . 1

57(y
2  

2x)

Z6- -1 Z60- 470.x2 j.412y4) 116 ' 261 - .(.2 3.~Y2 Y4)

Z07 Z7 -. a.15(y6 _5,Y4 .6,2y2 - 3) Z7'- z7 - -xy(32 _ 42* ý

ZS -zooj . x~y(v
6 
_6,Y4 . ox2y2.4x

3
) Zia 1.o,1 2(6 5XY4 61272 X3)

Z0 Z90 . -xfre - ?*6 25x234 _ lo15,l X4 Z2 19 - - Z91 - -y( Y
6
._ 6,Y lOX2 9 -45))

20(10) *-ZO(lo) , 789 176 . 21.2y4 .2ft3y2 . 34) z1i(lo Z(10)17 " 717_?6 . ~~ iox5y' It'

ROW 2 ROW 3

123 . 232 . - ]t 3 4 6

Z24 ' - Z2 ' X6Y235 *- .153 '- ' 5
225 2 52 '-5 15Y2 _l z 6 4(2 _X

Z26 ' -Z62 .y(.2 ) .* .14w,7 , 7 -IC x

Z27 " 272 -*'J - - 3 Z3 . X$3 . X21.4 3-2 -Y4

228 ft-.1 .832 -xy3 402 -Y4) 239 - -283 - xf~ _ ,xy2.4)

229 ' 192 - -.y6 5.y4 -6x272 _ .) Z 3  Y6 _1, 5~,Y4x .4622 _43

22(10) - -1(10)2 ' ( -6 6,74 . 10.2Y2 _ Z.)3(10) - Z(604322

ROW 4 ROW 5

Z45. 54. 2X Z6 ft 65 ' X

Z46 -~ - -6x' 2Y 
-

2Z7 " 274 "*-.3(y2_ ) Z57 - 1 75 " 2 2

Z4 t -g -X
2 Y(Y

2 _2x) z58 ' 285 . x(r _ X)

24.9 . Z94- -(x2 _ U2 -*Y
4
) 2,9 , -295 " .17(72 -230

Z4(10) - -Z(1 0 )4 - Yfx 4xy 2* .4) 25(10) " Z(10)5 ".12 _3x172, y4

ROWS6 ROW?7

Z67 - Z76 .- -1

Z68 - - Z66 -x2y Z70 Z87 ' z

Z9- Z96 .X'y
2 -X) 279 - - Z97 '-.17

26(10) - -Z(10)6 ' Y(y 2 -22) Z7(10 " Z(0) ' 2

ROW S ROW 9

28(10) ,-Z.(10)0 * 291)y21)
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TABULATION 10- Y

YO.0ROW 0 Itow I

TOO - 0 
l

y2- - (yA# * A 7) T1 " A

Y0 y 2 A7 * 2yA6 * A5  Ti3 -yA 7 4k 6

Y04.-..(y 3 A6 -3Y
2 k5 +3yA 4 +A 3 ) Y1 (2A6*25+A4

y 0 5 . 'k .4y3 A 4 *6y
2 A3 +4yk2  l T1 5 . 3 A 5 +3Y2 A 4 +3YA3 +A 2

-0 . .Y(y4A4 - 5y3 A 3 * 1072 k2 .lOYA 1  5A0 ) 16- -(3 4 A4 * 4y3A, 3 6y2 A2 .4Yk 1 * A0 )

Y7- y 3 (y 3 k 3 - 6y2 A2 ' 157k1  20A0 ) T1 7  ' y 2 (y3A 3 + 5y2 A2 *107A, IO10k)

Tod _ _y5 (y 2k2 * 77k1 * 21k0 ) IS- -y 4 (y 2 A2 *67k 1  15A0 )

S9-y7(YA1 -. SAO) T 19  ,Y6( A1 .7k0 )

T0 (1 0 ) - - Y9k0  r 1(10) - - YSA0

ROW 2 ROW 3

Y22 y - A9  y 32 -- 1I

T23 -A 7  T 3 3  " y2 7Aq A

T24 - -(YA 6 + A5 ) 7 34 ' - A6

T25  - 72A 5 *27k 4 *A 3  T35  , YA5 *A 4

Y26 - y3A 3Y2A 3+ 3A2 #A,)y 36..(Y2 A4 * 2yk3 + A2)

Y2 y(y'k, 3 4y2k2 *67k 1  4k0 ) 7,37 - y3A3 * 3y
2k2 * 3YA, * A0

T28 - y3(y2A2 *5YAl * IA0 ) T 3 8  . 2y2A2+k~ A0

29- y
5 (YA1 + 6k0 ) T,39  - Y4 (YA1 * 5k0 )

Y2(10) ' 7A0  yT3 (1 0 ) ' 6A0

ROW 4 ROW 5

744 Y73 - 2 A9 +YAS- A7  y 54 372 _-2YA +AS)

T 15  A 5  T 5 y4 -y 3Aq *y 2A - YA 7  A6

T4 - (YA4 + A 3 ) r 56 --A,+

T 47  y2A3 * yA2 *Al 757 YA3 * 2

T48 - y1 7k 2 *37A 1 3k, +TA 5g -- (y 2A2 yA, + A)

-4 y3(yA, * 4k 0 ) T5 "2 Cy 1 2 * 3A0 )

Y4(10) - 75A0 Y5(10) - 74A0
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TABULATION 10-Y
Bow 6

Y6 5  - - (4Y
3 

- 3y2A9 + 2YAS - A,7)

Y66 . Y5-y
4
A 9 -y3A - y 

2
A 7 .+yA6  A 5

Y67 -A 3

Y6 - (yA 2 + A1)

'Y69 - y(YA1 + . O

Y6(1O) ' -3A

ROW 7

y74

Y7 6y~ 2- 3yA9 + AS

Y76  - - (Y 4 
- 4y3Aq 3y2Ag 2yA7 *A 6 )

Y-7 y6 _ 5 A 9 -y4A 8 y 3 A7 Y2 A6 -YA 5 A 44

Y7 - A2

Y79 -yAl + A0

-710 -Y
2 A0

ROW 8J

Y85 (4Y- A9 )

Y86  - l0Y3 _ 6y2A 9 + 3YAS - A 7

87- - (6y 5 -57 4 A 9 -4y3A - 3y 2 A7 21 A6 A 5 )

Y88 .y 7_y
6
A 9 +y5A8 -y4A7 .-y3A6  y2A5 YA 4  A3

a - Al

Y8 (l 0 ) - - YA0

Flow 9

y95 1

Y96 -- COY2 
_-4YA 9 +AS)

-9 15Y4 
- 10y3A 9 + 6y2AS - 3YA 7 + A6

-g - (7y 6 
- 6y5A 9 + 5y4AS - 4y3A7 -3Y2 A6  2YA 5 *A 4

Y99 YS -yA 9 . yAS _y5A7  -y
4
A6 -y3A 5 .y

2
A 4  yA 3  A 2

T910 - A0

ROW 10
Y(06- 5Y - A9

y (10)7 , - 2y3_j2A 9 + 4YAS - A7)

Y(0g- 21Y5 
- 15Y4A9 * 1y3AS - 6Y2 A7 + 3YA 6 - A5

Y(10)9 - - (&7 7y6 A. 6y5A8 - 5y4A7 * 4y3A6 - 3y2A5 * 2YA4 - A 3 )

Y(1)(1) ,Y9 y A9 -yAS -yA 7 - 7 A6 - y A5 + y3A4 - 7 2A3 * YA2 - A,
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ORDER 12
12 zI l

Polynomial 1(z)- z +Allz +Aoz°+* .. +A1 z+Ao

Z- Matrix (elements see TABULATION 12-Z)

zoo z01 Z02 Z03 Z04 Z05 Z06 Z07 zoo Z09 Z0.10 Z0,11 Z0.12

z2O Zi1 Zl Z13  Z14 Z15 Z1 6  Z17 Z18 Z19  Z1110 Z1 411  Z1,12

z20 Z21 Z22 23 z24 Z25 Z26 Z27 Z28 Z29 Z2 ' 1 0  Z2 v1 1  22112

Z30  Z31 Z3? Z£33 Z£ Z35  Z36 Z37 Z3 8  Z39 Z3 , 1 0  Z3 1 1 Z 3.12

Z40  Z41 Z4 Z£43 Z44 Z45 Z46 Z47 248 249 Z4110 Z'1i1 Z•,12

Z50 £51 Z52 Z53 £, 255 Z56 Z57  Z58 Z59  Z5.10 Z5.11 Z5.12

Z60 Z61 Z62 Z63 Z64 Z65 Z66 Z67 Z69 Z69 Z6.10 Z6,11 Z6112

Z70 Z71 z72 273 Z£74 Z75 £76 Z77  z78 Z79 z7'10 Z7,11 Z7112

z8o Z81 Z82 z8,3 Z8 Z85 Z86  Z87 z88 Z 89 28,10 2811 28.12

z90 z91 Z92 Z93 Z94 295 296 £97 Z98 Z99 Z9.10 Z9 ,1 1  Z9.12

ZlOO Z0o'l Z£102 Z1013 ZIo'1 Z10,5 Z£106 Z10,7 Z10,8 210'9 Z1o0io Z1o'11 Z£1012

Z£110 Z11,1 Z11,2 Z11.3 Z1ii, Z£115 Z1116 211,7 zl118 ZII£ 9 Z11910 Z11,11 Z11-12

Lz1220 212,1 Z12,2 Z12-3 Z12.4 Z1215 Z12.6 Z12,7 Z12,8 Z12,9 Z12.10 Z12,11 Z12,12

Y-Matrix (elements see TABULATION 12-Y)

TOO £01 Y02 T03 YO4 Y05 Y06 ¥07 Y08 ¥09 £0910 Y0.11 £0'12

0 £II Y12 Y13 ¥14 Y15 Y16 £17 Yi8 Y19 £1110 YI.i1 Y£112

0 0 Y22 Y23 Y24 Y25 Y26 Y27 £23 Y29 Y291O Y2'11 T2112

0 0 £32 Y2, £34 35 Y 36 37 £38 Y39 3,10 £3.11 Y 3,12

0 0 0 £43 £44 "45 Y46 Y47 Y48 Y19 Y4'10 £4011 £4 12

0 0 0 Y53 Y54 Y55 Y56 Y57 58 Y£59 £5.10 Y5,II Y5'12

0 0 0 0 Y64 Y65 Y66 Y67 68 Y69 Y6.10 Y6.11 Y6 1 12

0 0 0 0 Y74 Y75 Y76 £77 Y78 Y79 Y7'.10 '711 Y7.12

0 0 0 0 0 £85 Y86 Y87 Yes Ya9 Y8,10 ye,11 £8.12

0 0 0 0 0 £95 £96 Y97 Y98 Y99 Y9.10 Y9'11 Y9.12

0 0 0 0 0 0 ¥10o6 Y10,'7 10.8 £10.9 YIO1io Y10111 £10.12

0 0 0 0 0 0 £11.6 £ 11.7 £118 Y11.9 TIIIO Yiiii Y£11012

0 0 0 0 0 0 0 £1217 £12.8 £12.9 YI2'10 T£2211 12.12
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TABULATION 12- Z

now 0 Now I

Z201 210 x 1 2 &

212 -l 220*,1
Z03- z ~ -x(2 ) 213 - -*Z3 1 ' - or

61 1 2 2 
6

Z05. 50 ( - 3x *62, 334 21 . -. 5, - 37(,2 - 2 *)~

2o . Z60 X"Y(3x -6y *103
2

7
2

.4l 816 - 3.1 y4~,..6 2 3)

Z06 - Z60. 3
(

8
.7q 21 12, - A.31266*41~,

20 C 7 Z5(y6_5y 6x272 X3) 2'-g x(3t . X 2. 4)
20.10 _ Z#o'o y(76 - 6zy * 2137xy - 4.31 21,1 o* % X4(,6_5y 4 6%y X31

Z.1- Zl~o -~a( - ,9,8 - 2627 - 35~y . 153j412 . 25) 21,11 - -Ziil,i .XY ye7~ - #37
6 

*21X274& - 2f * 5y~l

g 0 ,1 2 -- Z1 2 , 0 Y(Y .10 7 .oya,36X2,76 -56m33 *35x4Y -625) ZI1 ' 212-1 " r~ - 9378 *2822y6 - MY - 15xlva- 0

POW 2 ftow a

223 . Z2 ,2 - X9

2 24 '- Z2 . 17 34. - 243 *I

Z2 - Z52 ' 'x7(y2 _~ 2 35 ' -251 ' x?,

Z2 Z1_x~y(Y2 - 2x) 236 - 263 " 3(7 X~)

Z27 " 272 . x
5
(.
2 

_ 372 . Y4) 2 3? ~ "27 - (27( -.2x)

z22 2 82 - 4Y(3x2 -2x2- 438 ' e ,83 2 X2 4

*2 292 . I(76 _ X .6x2 y2 _ 33) Z32 - Z9 ". .370%32 _ 4K2 . y4)

z 2. 1 *-ZIo,2 * 12, 6 _ x4 .o2y2 -20 3,10 * Z1013 'x2(y6 - 5.y* 6.y2 _-3

Z2-11 - 1112 '-X~ 8 71ty
6 

*5X y 4 _IO32 * z) Z3,11 " - Z1113 ' .37(76 _ 637' 103o,
2
y2-. 3

22,12 ' z1212 ' Y(y 
8 

836, 21x2 y4 _ 20372 * 5y4) 2 3,12 ' 212,3 .7 -O 7.76 . j..y - p2*
3
y' X~4

ROW 4 ROW 5

245 2 z54 ,- -

2 46 .- .z ( . x6, 256 - Z65 '.

z 47 ' 2 74 ' -x5(y, -X) z 7--Z5- -15

24,3 .- Z84 .
4
7(Y

2 
. 2N) Z58 . Z85 . X4 (7 -it

z 9, z9 '3(Z2 _ X2 + 4) z 59 - 19 *x3Y~ X

2 4,10 .- 21004 .1x27Y(322 - 1.372 .Y4) 
2
5,10 210.5 1 2 (X2 - 337 2 . y4)

Z41 14' -X ~ 537 * 6X2 y 2 _ X) 25.11 . Z 111 - ..17(3x - 4XY 2 . 4)

24,12 * Z114' (6 -6xy4 10.2Y2 _ 4X3 ) 2512 ' 12152., .6. _ 5x4 6327y2 _ X3
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TABULATION 12- Z

ROW 6 ROW 7

67- 276 'EB- X 5  z1 4

Z68 - Z6 -Zey 7 9 Z# 7 - x

Z9- Z96  =..3y.y - X

26t10 - -z10 16 - x 2 yty 2 _ 2z2z7110 ' 2o107 - X2 (Y2 -X)

Z61,11 - 211,6 '- x~x 2 _ 3172 + y4) Z27,11 -l Z 1] 7  " U 1(T 2  2-

Z120- Z12 16  m vC3x 2 _ 4172 + Y4 2 7112 a 21217 - Yý2 _ 3x172

ROW a ROW 9

z9,1 - zlO, - -x

-el " Z11 s,g --x(Y 2 X) -gj iig,-x

-~l _Z1218 - -~ 2x) 29,12 - 129'y2

ROW tO ROW 11

210912 - - 121210 -y Z11 112 - 12,1 -.



49-5 1

TABULATION 12-Y

ROW 0 ROW I

Yo 0

T01  A 11  T11 ".

-0 -(yA 10  A9 1 T1 2 ' A10

Y0 y
2
A9 * 27AS A7  T 1 3 , yA9 * AS

Y04 .(y
3
AS-3Y

2 
A 7 +3YA 6 +A 5 ) Y4.- 2Ad*2& 6

Y0 yA 7 *473A6 * 672A5 -47A4 A:3T5 3 * 3y2A6, 37A5k + A,.

T 0 .y3y474 'A3 21y2
A2 -3Y, 5A S-Y -(y A4 . 6y'A 3, yA2* 0~ 5O

Yo 5yA3.a22*28yA, - 6O T19 - Y
4

(T
3

A 3 +7 ?yA 2  21YA, + 35A0 )

sYoo -y(7A 2 * 9yk1 + 
3
6ko) T1510  -7 6(yA 2.+ yAl 2SA0 )

10111 . Y9yA -7~ 10O) T1 , 11 , y a(YA1 - 9A0))

-01 1 
11

A0  Y1 , 1 2 ' -lA

ROW 2 ROW 3

Y22 y- AllT 3 2 . 1

T2 3 -A 9  T 3 3 ' y 2 _yA11 * A1 0

T24 - -(Yk 8 * A 7 ) T 34 '- As

Y25 ' A 7 + 2yk6 * A 5  T 35 " YA7 + A6

=26 - -y36 - YA 37k4 +A 3) T 36 '-yA 6 + 2YA5 + A4)

T27 ' 
4
A5 +44

3
A 4 *67

2
A3 *4YA 2 *A, T 3 7 'y 

3
A 5 +372A 4 +3YA3 +A 2

28--y(y
4
A4 * 5y

3
A 3 ' 10Y

2
A2 * 10YA1 * 5k0 ) T38 '-(7A yA3 622 4~ o

T29 ' Y
3
(7'A 3 +67

2
A2 + 157A1 + 20Ao) T39 ' y 

2
(y

3
A 3 + 5Y 

2
A2 * 0ykl 1  A0 )

Y10 - (y2A 2 .+ 7yA1 +.21ko) Y3110 - .. 7C72 A2 '67Al 15A0 )

Y11- 7 (YA7 . BA0) T3111 'y (YA1. . 7k0 )

Y21 - y9A0  ~l -YA 0

ROW 4 ROW 5

-4 -(2y - All) yT53 -.*1

T45 - A7  T 55 ' y 4 - y
3
A11 4 y 

2
A10 -yA 9  Ad

46- -(7k 6 * A5) T5 6 -- A 6

-47_ 
2
A 5* 2YA4  A A3  T57 - 7A5 * A4

T48 - -(y'k4 * 3Y
2
A3 + 37k2 + A-) T58 - -(y

2
A4 + 2yA 3 + A2)

Y49 - y(y 3 k, * 4y2k2 * 6yA1 + L40 ) y 59 - yv3A3 + 37
2
k2 * 37k 1  A0

y4110 * 33(2A2*57Al 10AO) T5 910 " 2(Y 2A2 * 4yAl * 6A0)

-41 y3(7A1 + 6k0 ) T 5#11 ' 7
4
(yAl * 5A0)

T4112 " - 7k0 y 52"-7 yA 0



TABULATION 12-Y

ROW 6

64- 3Y - All

Y65 - -(4Y3 - 372A£ 2YA10 - £9)

y6 _1 _ 7IIA~j 3 yAio _ 72A9 . YAS A 7

67- A5

Y 8 - 7 2 A A 3

Y6 9 - £2A3 *27A2 A,

Y6,10 '-7(7 2A2 + 3YA1 + 
3Ao)

Y6,11 - y3(yAj + 440)

Y6112 - - 7Ao

ROW 7

y74

y - 6y 2 _ 3ykll £10l

-76 (5y4 - ly3A11 * 37 2A10 - OrAg + AS)

T7 6 - Y5A1 1 + 
4A 10 -

3A9 +y
2AS - A7  A6

Y7 - A£4

Y79 a YA3 + A2

T 7410 ' -y 2A2 + 2YAi Ao)

Y7111 ' (yAi + 3AO)

-71 - 74Ao

ROW 8

Y8 - (47 - All)

Y86 - 10Y - 672Auu 3YAjo - A 9

-8 -(6y 5 - 5y4A~~l 4y3Auo - 372£g + 27£. - A7)

Tag -=77- y6A 7 5j 49 - 'a Y 77 - A6 A5

Tag -A3

Yto,- =CA2 + A,)

8,1- Y(YAI~ + *

T8112 - - Y3AO



TABULATION 12-Y

y 95 ROW 9

Y96 1o7 2 -4yA11, + £10)

Y9 15Y4 - 1OT3A11 + 6y2A10 - 3YA9 + A

*f8 0 -(7Y 6 - 6y5A11 + 5y 4A10 - 4y3'£9  3y 32AS 2yA7 A 6)

Y99 oy 8- yAjj*y6A1 O - yA 9 + 4YAS 3TJ1 Y2A 6 YA 5  A4

YVO- - A2

Y91 yAl * AO

9'2"- 7 2£

ROW 10

Y1016 , 5Y - All

T1# -(20Y3 _ lOy2A11 + 4YA10 - A 9)

Y's,21y5 - 15y Au. luy3A1 0 _ 6y7A 9 + 3yAS - A

Y1019 , -(y 76l - 6 Y5l - 5y49 - ,3A - 77*A 2yA6 -A 5 )

T 1O]0  ' 9- y YAl *Y7A1 0 - y6 9 'IAd - YA 7 -IA 6 72A 5  -A 4  A3

T10112 - - YAO

ROW It

T1116 ' - 1

-lt 15Y 2 _ 5yA11 * A10

llS- -(35Y 4 
- 20y3Ali + 10y2 A1 0 - 4YA9 * A8)

Y1l,9 - 28y6-_ 2ly'£ii + 15Y4A1 0 - l073A 9 +6y 2AS - 3YA7 + A6

y1,1 , (938 - #y7A11 4 776£l - 6YA9+54A - 47A*yA y5 A4

T11 7 y10 - y9 A11 * YSAIO - y 7A9 - y6 A# - Y'5A7 - y4A6 -3 5~A * 72£ - 7A3 A 2

ROW 19
Y11 -(6y All

-11 35y3 - l15y 2 A 114 5YA10 - A£9

T1219 -- (56Y3 - 35y4Aii * 2073A10 - oy 2A 9 + 47£g.- A 7)

T12,1O 3677 - 28y6A11 + 21y5AiO - 15Y4A9  10 ly3£ - 6y2A 7 + 3YA6~ -A5

Y111 ..(iOY9 - 97'Al1 1  4i 87A£ - 7y6A9 - 6y'£. - 574A7 - 4y'£6 - 372£, - 2yA4 - A£3)

T12112 -y" - yoAll *y9A0 - y £ 94 -7AS - yA7 - y5A6 - Y4A5 + r3A4 -7 2A3 * yA2 - A
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